If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-43w=0
a = 1; b = -43; c = 0;
Δ = b2-4ac
Δ = -432-4·1·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-43}{2*1}=\frac{0}{2} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+43}{2*1}=\frac{86}{2} =43 $
| 3.7*0.5^x=-x+3.4 | | 22+48=h-220 | | x2−16x+63=0 | | 5x+4=20+6x | | X2+a=12 | | J(x)=200x | | 1/6x+8=18 | | n+6.7=20 | | H(x)=6x+44 | | -13.6=-2.4+v/7 | | 38=x/5-50 | | -82=x/2-75 | | 5(x-12)=100 | | G(x)=30(2)^x+8 | | 3.2n=4.8 | | -4.1=v/6+15.1 | | 1/4x+1/2=X+1/2 | | F(x)=2(14)^x+1 | | 6-(3-2x)=11 | | 5^x-13=5^3x+5 | | 8x+2-3x=222 | | F(x)=2(14)^4+1 | | 8x-2=4x-102 | | -24=-6-6f | | 11y-9y=2 | | 15+6r=435 | | 36/16=9/16v | | x/12-1/6=24 | | n/16=32 | | 15^-2x=12 | | 3-m/5=8 | | 12=a/7-2 |